The Relationship Between Islamic Bank Efficiency and Stock Market Performance: Evidence from GCC countries

Samir Srairi¹, Imen Kouki², and Nizar Harrathi³

Using data envelopment analysis (DEA), this paper estimates the efficiency of 25 Islamic banks operating in Gulf Cooperation Council (GCC) countries during the period 2003-2009. It also examines the relationship between the efficiency of Islamic banks and the performance of their stock. The results suggest that efficiency measures, particularly technical and pure technical efficiency, have increased over the period of study but remain low as compared to conventional banks. The inefficiency of Islamic banks can be attributed to pure technical inefficiency rather than to scale inefficiency. We also find that large and small banks are more efficient than medium banks in terms of overall technical efficiency. Furthermore, the empirical findings show that both technical and pure technical efficiency changes are positively related to share returns, while changes in scale efficiency have no impact on stock performance. Finally, the regression also indicates a significant and positive association between market return and the book-to-market equity ratio with share prices.

JEL classification: C14, C23, G21.

Keywords: Banking, technical efficiency, stock performance, Islamic banks, Data Envelopment Analysis, GCC countries.

1. Introduction

Islamic bank is an institution that mobilizes and invests financial resources according to Shariah. Islamic banking transactions are based on six basic principles: prohibition of interest, risk sharing, money as potential capital, prohibition of speculative behaviour, sanctity of contracts and Shariah approved activities (Iqbal, 1997).

Islamic banking, which started to operate since 1960s, exists today in all regions in the world, particularly in the Middle East and Southeast Asia. According to the report of Blominginvest bank established in February 2009, more than 390 Islamic financial institutions spread across 75 countries with total assets are estimated at close to $ 1 trillion by 2010. Moody’s investors service, the rating agency, in its forecast suggesting that Islamic banks assets will reach $ 4 trillion within 5 years worldwide. Islamic financial system is considered as one of the fastest growing financial and economic sectors in the world. During the last decade, Islamic banking industry has grown at a remarkable pace, 20-30% per year three times the rate for conventional banks⁴. According to many reports⁵, the rapid and the continued growth of the Islamic banking are driven to multiple factors such as: increasing demand from a large

¹ Samir Srairi, Associate Professor, Finance, Faculty of Law, Economics and Management of Jendouba, (LAREQUAD), srairisamir3@gmail.com
² Imen Kouki, Assistant Professor, Finance, Higher Institute of Management, Tunisia, (LAREQUAD), Email: imen_kouki@yahoo.fr
³ Nizar Harrathi, Assistant Professor of Quantitative Methods, Faculty of Economic Sciences and Management of Nabeul, (LAREQUAD).
number of Muslims\(^6\), rising oil wealth of Muslim countries\(^7\), low banking penetration in Muslim majority nations, increasing demand from non-Muslim customers and countries, and the support of government and regulatory for the development and promotion of Islamic banking. Furthermore, Islamic financial system has been less affected than traditional system by the latest economic and financial crisis (2008), mainly due to its profit-loss sharing principle, and also because of its strict prohibition of investments in risky instruments like toxic assets and derivatives. In addition, according to IMF survey (2010) and Chapra (2009), Islamic banks have contributed to financial and economic stability during the global financial crisis. The strong performance of Islamic banks, in the last years, has encouraged several universal banks in developed countries to add Islamic products in their conventional banking industry through Islamic banks windows or Islamic banking subsidiaries.

In view of the rapid growth of Islamic banks, several issues are revealed about the performance of these financial institutions. In addition, as Islamic banking was introduced as a parallel system of conventional banks in the majority of countries, the performance of the new form of banking may have an impact on the soundness and stability of the all banking system (Mariani, 2010). Moreover, the last economic and financial crisis has turned the focus towards Islamic financial institutions which have showed strong resilience than conventional banks, according to many institutions (Moody’s, IMF working paper, 2010, etc.). Despite the strong position of Islamic banks, several studies (Iqbal, 2007, Iqbal and Van Greuning, 2007) have identified weaknesses and vulnerabilities among Islamic banks in the areas of risk management (operational risk, weak internal control processes) and human resource issues (quality of management, technical expertise, professionalism). Therefore, it will be interesting to analyse the performance of Islamic banks during the last decade in order to provide some guidelines for managers, investors and policy makers to improve the efficiency of these banks and to formulate managerial strategies and public policies. So, the aim of this study is to investigate the efficiency of Islamic banks operating in Gulf Council Cooperation (GCC) countries\(^8\) during the period 2003-2009 and to examine the relationship between the efficiency of Islamic banks and the performance of their stock. To our knowledge, this is the first study which analyses the relationship between efficiency and share performance in the context of Islamic banks in GCC countries.

To a better understanding of the Islamic banking sector in GCC countries, our analysis is conducted in two steps. First, by employing a non-parametric approach, Data Envelopment Analysis (DEA), we estimate the technical efficiency of 25 GCC Islamic banks under the profit oriented method which defines cost variables as inputs and revenue variables as outputs. In addition, to analyse the sources of inefficiency of these banks, we calculated pure technical efficiency and scale efficiency as two components of technical efficiency. We choose a period of six years between 2003 and 2009 in order to investigate the evolution of the efficiency of Islamic banks over time. Moreover, we attempt in this study to compare the efficiency measures of Islamic financial institutions according to their size in terms of total assets. Following several studies concerning conventional banking industry (e.g., Haddad et al. 2010; Pasiouras, 2008; Beccali et al. 2006), we study in the second stage of this paper the potential association between Islamic banks efficiency and their share prices. For this objective, we regress annual stock returns calculated as the sum of daily share returns on efficiency scores obtained in the first step with adding some control variables.

\(^6\) Muslim population will account for nearly 30% of the world’s total by 2025.
\(^7\) at $50 the barrel, GCC countries will earn a cumulative approximately $5 trillion by 2020.
\(^8\) Oman does not allow Islamic services.
This paper presented some interesting points comparing to a few studies on Islamic banking efficiency in GCC countries. First, our sample comprises more than 90% of GCC Islamic banks' assets, which makes it the most comprehensive database on the GCC Islamic banking industry. Second, this is to our best knowledge, the first study that relates the efficiency of Islamic banks in GCC countries to their stock prices. Finally, our paper also attempts to study the impact of the recent economic and financial crisis on the performance of GCC Islamic banks and compare their efficiency between large, medium and small banks.

This article is structured as follows. Section 2 carries out a review of literature on Islamic bank efficiency and on the link between bank efficiency and share performance. In the third section, we present the methodology to calculate efficiency scores and the model employed to understand the impact of bank efficiency on stock returns. We also describe in this section the sample and the variables used to estimate the efficiency frontier. Section 4 reports the empirical results. A discussion of the results is presented in section 5 while section 6 concludes the study.

2. Literature Review

Two streams of literature are discussed in this study. The first one concerns the efficiency of Islamic banks and the second is relevant to the relationship between bank efficiency and share performance.

2-1. Studies on Islamic bank efficiency

While, the literature on bank efficiency is widely discussed on conventional bank sector, particularly the development countries and a smaller degree the transition economies, the work on Islamic banks is still not well developed. Even with the development of the Islamic banking sector, in several regions of the world, a limited number of papers have evaluated the efficiency of the new form of banking and no study concern the relationship between bank efficiency and share performance.

According to Bashir (2007) and Sufian et al (2008), the most majority of studies on Islamic banks have focused especially on the concept issues describing the underlying principles (Al-Omar and Iqbal, 2000; Zahar and Hassan, 2001; Lewis, 2008, etc.) and the performance measures using traditional financial ratios of these type of banks (Bashir, 2001; Olson and Zoubi, 2008; Srairi, 2009). A few studies have utilized frontier analysis techniques rather than traditional methods to estimate the efficiency of Islamic banks. Using both the stochastic frontier approach (SFA) and the DEA models, Hassan (2007) estimated a variety of parametric (cost, profit efficiency and productivity) techniques to a panel of 43 Islamic banks operating in 22 countries during the period 1993-2001. He found that Islamic banks are relatively more efficient to generate profits than to control costs. In fact, the score of profit efficiency is about 84%; while for the cost efficiency is only 74%. The results also indicate that the major source of inefficiency is due to the allocative inefficiency rather than technical inefficiency.

Mokhtar et al. (2008) used a non parametric DEA technique and an intermediation approach to estimate the technical and the cost efficiency of the fully fledged Islamic banks as well as Islamic windows in Malaysia from 1997 to 2003. The main results of the study reveal that, although the fully fledged Islamic banks are more efficient than the Islamic windows, the two
types of Islamic banks are still less efficient than the conventional banks. This finding, also, shows that the average efficiency of the overall Islamic banking sector has been increased over the survey period.

Employing the DEA model, Sufian et al (2008) examined the technical efficiency and its components (pure technical efficiency and scale efficiency) of 37 Islamic banks operating in 16 MENA and Asian countries during the period 2001-2006. The results suggest that pure technical inefficiency dominates scale inefficiency of Islamic banks during all years except for the year 2006. On the other hand, the authors found that the MENA Islamic banks have exhibited higher technical efficiency compared to the Asian Islamic banks counterparts.

A more recent study was conducted by Srairi (2010) and concerned GCC countries. He employed a SFA model with country-specific environment variables and he estimated the cost and profit efficiency of 71 commercial banks during the period 1999-2007. The empirical results indicated that the conventional banks, on average, are more efficient, in terms of cost and profit, than the Islamic banks. This study also revealed that both conventional and Islamic banks in Arab Gulf countries are relatively more efficient in generating profits than in controlling costs.

2-2. Bank efficiency and share performance

While there is an extensive literature examining several issues on bank efficiency such as the impact of liberalization on the efficiency of banks (e.g., Chen et al. 2005; Das and Ghosh, 2006; Paul and Kourouche, 2008), the sources of bank inefficiency (e.g., Grigorian and Manole, 2006; Pasiouras, 2008; Sufian, 2009), the comparison of the efficiency of banks according to country (e.g., Fries and Taci, 2005; Kasman and Yildirim, 2006; Inui et al. 2008), ownership structure (e.g. Isik and Hassan, 2003; Bonin et al. 2005; Kyj and Isik, 2008) and to the type of banks (foreign vs. domestic banks: Havrylchyk, 2006; new vs. old banks: Canhoto and Dermine, 2003; Conventional vs. Islamic banks: Srairi, 2010), only a limited number of papers have investigated the impact of efficiency of bank on stock performance and none of them concerned the Islamic banks. The relationship between efficiency of bank and stock performance of conventional banking sector has been studied both for individual country and for cross-sections of countries.

Haddad et al (2010) estimated the monthly efficiency and productivity of 24 listed Indonesian banks and their market performance using a non-parametric approach, Slack-Based Model (SBM), over the period January 2006 to July 2007. They found that the stock market values banks are in accordance with their performance. The results also indicate a positive correlation between the index of the Indonesian stock exchange (JCI) and bank efficiency. On the other hand, the findings suggest that Indonesian banks with foreign ownership tend to be less efficient than their domestic counterparts.

Using both DEA and SFA methods, Xiang and Shamsudding (2009) calculated the technical, cost and profit efficiency of nine of publicly listed Australian banks over the period 1997-2007 and analyzed the potential linkage between these efficiency scores and stock returns. They observed that an improvement in cost and profit efficiency, calculated under SFA model, increases bank stock performance. However, the DEA efficiency scores are uncorrelated with stock returns.
Pasiouras et al (2008) examined the association between the efficiency of 10 Greek banks and their share performance between 2000 and 2005. The authors used the DEA technique (profit oriented approach) and computed three efficiency levels: technical efficiency under constant returns to scale (CRS), technical efficiency under variable returns to scale (VRS) and scale efficiency. The results indicated that annual changes in technical efficiency (under CRS or VRS) are positively related to stock returns, while changes in scale efficiency have an insignificant impact on share performance. Erdem and S. Erdem (2008), used DEA with intermediation approach, found no association between stock price returns and change in economic efficiency for Turkish banks.

Across international financial markets, Beccali et al (2006) used both SFA and DEA approaches to estimate cost efficiency for a sample of banks operating in five European countries (France, Germany, Italy, Spain and United Kingdom) in the year 2000. The results suggested that the change in the prices of bank shares reflects percentage changes in cost efficiency particularly those derived from DEA. More recently, Liadaki and Gaganis (2010) choose a large sample (15 EU countries and 171 banks) and longer time period (2002-2006) than Becalli et al. (2006). They estimated the cost and the profit efficiency by using SFA model and taking account the macroeconomic and other country specific characteristics. The main result of this study shows higher profit inefficiency (21%) than cost inefficiency (10%). This means that European banks are more efficient to control costs than to generate profits. However, Srairi (2010) found that profit efficiency scores are more informative to shareholders and investors in Gulf Arab countries. In fact, the changes in profit efficiency have a positive and significant effect on stock returns, while there is no association between changes in cost efficiency and stock returns.

3. Methodology and data

In this study, we employ three-stage procedure to analyse the efficiency of Islamic banks and its relation to share price performance. In the first stage, we use a non-parametric approach (DEA technique) to estimate efficiency scores with input-oriented model. Secondly, to measure the share performance for each bank, we calculate annual stock returns on the basis of daily share returns.

In the last stage, we examine the relationship between bank efficiency and stock performance by regressing the annual return on stock against the yearly change of efficiency levels.

3-1 DEA model

Two models in the literature are used to examine the efficiency of banks. Parametric technique, such as Stochastic Frontier Analysis (SFA), Thick Frontier Approach (TFA) and Distribution Free Approach (DFA), uses econometric tools and specifies the function form for the cost or profit function. On the contrary, the non-parametric approaches (such as Data Envelopment Analysis (DEA) and Free Disposable Hull Analysis (FDHA)) do not make an assumption concerning the functional form of frontier and use a linear program to calculate efficiency level. The small size of our sample pushes us to adopt DEA technique, which was first introduced by Charnes et al (1978). According to Avkiran (1999), DEA is thought to work well with less data, fewer assumptions and limited sample sizes. Furthermore, the DEA does not require any specification of the functional form on the data to construct the production frontier, and the distribution forms of errors (Bauer et al. 1998). However, DEA has some limitations. This technique is very sensitive to outlying observations, and all deviations from the frontier indicate inefficiency (Havrylchyk, 2006). Moreover, the DEA
approach does not allow for any error in the data, and in consequence it may overstate the true levels of relative inefficiency for some entities (Drake and Hall, 2003; Berger and Mester, 1997). Despite its limitations, we suppose that DEA is a robust tool to examine the efficiency of Islamic banks in GCC countries.

DEA is a deterministic model that can be used to examine the relative efficiency of a number of entities (decision-making units: DMUs) in the sample having the same multiple inputs and multiple outputs. To calculate the efficiency scores, a linear programming model is solved for each bank9. The DEA model measures the efficiency10 of each DMU relative to all other DMUs with the simple restriction that all DMUs lay on or below the efficiency frontier (Das and Ghosh, 2006). If a DMU lies on the frontier, it is referred to as an efficient unit. Otherwise, it is DEA inefficient. The value of the efficiency score for each DMUs is ranged between zero and one. To define the best practice frontier, DEA can run under either constant returns to scale (CRS) or variable returns to scale (VRS). The main difference between these two models is the treatment of returns to scale. The VRS model, which was defined by Banker et al. (1984), compares each bank only with other banks operating in the same region of return to scale (banks of similar size). However, the CRS assumption is only justifiable when all banks are operating at an optimal scale. It means that a rise in inputs results in a proportionate rise in outputs. On the other hand, a DEA model can be constructed using the input orientation (minimizing inputs) or output-orientation (maximizing outputs) approach.

The first one is defined as the ability of the bank to obtain a given level of outputs by utilizing minimum combination of inputs, while, the opposite approach analyzes the ability of banks to produce the maximum level of outputs given the current level of inputs (Cooper et al. 2000). In this study, we adopt input-oriented DEA technique because of the expressed interest in Islamic banking sector to more control costs. Many studies (Archer and Abdel-Karim, 2002; Kamaruddin et al. 2008) conclude that cost of fund and labour in Islamic banks is higher when compared with those in conventional banks.

The DEA approach permits to calculate for each bank the overall technical efficiency (TE) and its two components: pure technical efficiency (PTE) and scale efficiency (SE). PTE, also called managerial efficiency, represents the failure of the bank to extract the maximum output from its adopted input level, and hence, it relates to the ability of the manager to utilize the firm’s given resources (Drake and Hall, 2003; Pasiouras, 2008). SE, another indicator of efficiency, measures the proportional reduction in input usage if the bank can operate at a point where the production exhibits CRS (Kyj and Isik, 2008). It can be computed by dividing TE under the assumption of CRS to the TE under the VRS assumption (TE = PTE*SE). To calculate these efficiency scores, we employ the software DEAP version 2.1 developed by Coelli (1996).

3-2 Specification of inputs and outputs

To estimate the efficiency frontier by the DEA technique, we need measures of inputs and outputs. In the literature there has been little consensus over which inputs and outputs should be used with the DEA model and how they could be measured (Berger and Humphrey, 1992). Consequently, several approaches are used in bank efficiency studies: the production approach, the intermediation approach, the operating approach and the profit approach.

9 See Fields et al. (1993) and Charnes et al. (1994) for the mathematical formulation of the DEA technique.

10 The efficiency for each DMU is obtained as a maximum of a ratio of weighted outputs to weighted inputs.
Following recent studies on bank efficiency [Drake et al (2006), Pasiouras (2008) and Sturm and Williams (2004), among others], we adopt in this study the profit oriented approach. This method focuses on revenues as well as costs. It has also the advantage to better understand the strategies banks used to respond to the changes in environment. Accordingly, three inputs and two outputs are selected to estimate efficiency levels. Hence, the vector of inputs comprises: employee expenses (x_1), other operating expenses (x_2) and loan loss provisions (x_3)\(^\text{11}\). The vector of outputs includes two variables: net interest income (y_1=interest income\(^\text{12}\) - interest expense) and other operating income (y_2)\(^\text{13}\).

3-3 Bank efficiency and share performance

Once the efficiency scores (TE, PTE, SE) and the annual share returns are computed, we try in the third stage of this study to examine the impact of the efficiency of Islamic banks on its performance (e.g., Liadaki and Gaganis 2010; Sufian and Abdul-Majid. 2009; Erdem and S. Erdem 2008). The relationship is checked using the following linear model:

\[
RS_{it} = \alpha + \beta_1 CE_{it} + \beta_2 MR_{jt} + \beta_3 BSF_{it} + \epsilon_{it}
\] (1)

Where RS_{it} is the annual return on bank i’s stock in year t. CE_{it} represents the annual percentage change in bank efficiency and includes the technical (TE, model $N^\circ 1$) or pure technical (PTE, model $N^\circ 2$) or scale efficiency (SE, model $N^\circ 3$) for bank i in year t. MR_{jt} is the market return for banking sector j in year t and BSF_{it} concerns some specific factors and includes two variables: LTA\(_{it}\) is the size of bank i in year t measured as the natural logarithm of total assets and BM\(_{it}\) is the book-to-market equity ratio calculated as the ratio of the book value of a bank’s equity to its market value. The α intercept represents the constant of the model, β_i are the parameters to be estimated and ϵ_{it} is the disturbance term calculated as follow:

\[
\epsilon_{it} = u_{it} + v_i
\]

Since we have a panel regression combining cross section and time series data, we estimate this model by using fixed effect model (ν_i which represents bank specific effect is fixed over time) and random effect model (in the case ν_i is considered as an error term). The fixed effect model is tested by Fisher (F) test, while random effect model is examined by Lagrange Multiplier (LM) test. If the null hypothesis of heteroscedasticity residual variance is rejected the ordinary least square (OLS) regression is favored. To choose between these two models, we calculate the Hausman test (H).

3-4. Data

Our sample comprises 25 Islamic banks operating in five Gulf Arab countries (GCC) with 6 banks in Bahrain, 8 banks in Kuwait, 2 banks in Qatar, 2 banks in Saudi Arabia and 7 banks in the united Arab Emirates and over the period 2003-2009. The choice of the region is justified by many reasons. First, GCC countries which comprises six states (Bahrain, Kuwait, Qatar, Saudi Arabia, the United Arab Emirates and Oman) hold the largest share, about

\(^{11}\) Loan loss provision = provision from Murabaha, Mudarabah, Ijarah and other Islamic financing.

\(^{12}\) Interest income = income from Murabaha and Mudarabah with financial institutions + income from Murabaha, Mudarabah, Ijarah and other Islamic financing.

\(^{13}\) Other operating income = investment income + fees, commission and foreign exchange income + income from investment and development proprieties.
61.6%, of assets Islamic banks in the world ($263 billion in 2008). Saudi Islamic banks occupy the first place in terms of GCC Shariah-compliant assets (35%), followed by Kuwait (24%), the United Arab Emirates (19%), Bahrain (14%) and Qatar (8%). During the last decade, the Islamic banking in GCC countries had achieved strong growth in terms of total assets (over than 35%). Second, since 2002, the GCC region has been in a relatively strong position (7% growth between 2002 and 2008) and it’s expected to continue in the same pace and to launch mega projects of more than $1 trillion during the next decade. Finally, while GCC states provide several opportunities in many sectors and offered ample liquidity in the banking sector, Islamic banks are expected to diversify more their products and services and in consequence attract a wider clientele. In addition, the Islamic financial system will continue to spread to investment banking, project finance, capital markets, insurance, wealth management and micro-finance.

The annual data of Islamic banks (financial statements), used to calculate the efficiency scores, are collected from Bankscope Database of Bureau Van Dijk’s Company. The daily stock prices and market index are obtained from Datastream. Since Gulf countries have different currencies, all the annual financial values are converted in US dollar using appropriate average exchange rates for each year. Also, to ensure comparability of data across countries, all values are deflated to the year 2003 using each country’s consumer price index (CPI).

Table No 1 summarises the mean of inputs and outputs employed in the DEA model and also presents average value of stock returns and control variables used in regression over 2003 to 2009. The analyze of the table shows a great increasing of all inputs and outputs during the period of study. In fact, we note that the employee expenses, the other operating expenses, the net interest income and other operating income have grown up, respectively, about 200%, 211%, 153% and 243%. The loan loss provision was constant, during 2003-2007 and has grown rapidly during the two last years (2008 and 2009). It is interesting to note that the crisis has not the same effect on the Islamic banks as it’s remarked in the conventional banks (Blominvest bank report, 2009). However, the income of Islamic banks has exhibited only a small decreasing of 4%. Finally, we note an increase more than 25% of the average rate of assets.

4. Empirical results

The analysis of the empirical findings on the efficiency of Islamic banks in GCC countries will be structured in two main parts. First, we estimate the overall technical efficiency and its components, measured by DEA method, and evaluate its evolution over time. Moreover, we also attempt to examine the efficiency of Islamic banks according to their size. In the second part, we extend the analysis by examining the relationship between efficiency scores of Islamic banks and their share performance

4-1. DEA efficiency measures

In this section, we examine the efficiency scores of Islamic banks calculated under profit-oriented approach and obtained by the DEA technique. In order to analyse the evolution of the efficiency of Islamic banks between 2003 and 2009, we choose to construct a common frontier for all banks in sample with an implicit assumption of the absence of technical change

during the period of study. In this approach, the efficiency of each bank observed in different years is estimated vis-à-vis a common benchmark technology (Canhoto and Dermine, 2003).

Table N°2 provides a summary of annual means of efficiency indexes over 2003-2009 classified by year (panel A) and by size (panel B). As can be seen from this table, overall technical efficiency scores exhibit an upward trend from 2003 to 2009. The mean of TE varies from 61.2% (2003) to 68.5% (2009) with an average equal to 65.5%. This result appears to show an improvement of the efficiency of Islamic banks during the period of study. Indeed, efficiency scores, particularly TE and PTE have been increased by 12% and 13% on average respectively while scale efficiency has been remained constant. However, during 2008 and 2009, these measures are constant but slightly changed and increased respectively by 1.5% and 1.7% compared to 2007. Apparently, the last financial and economic crisis has affected the performance of Islamic banks, but to a lesser extent than in conventional banks. According to Hasan and Dridi, (2010, p.17), “the initial impact of the crisis on Islamic Banks’ profitability in 2008 was limited. However, with the impact of the crisis moving to the real economy, Islamic Banks in some countries faced larger losses compared to their conventional peers”.

Despite the increase of the efficiency of Islamic banks between 2003 and 2009, the average of the input waste is large and equal to 34.5%. Therefore, it stills room to improve the performance of these banks by using their resources more efficiently. Indeed, the efficiency scores of Islamic banks in GCC countries are low not only compared to conventional banks (Srairi, 2010, Rosly and Abu Baker, 2003) but also to Islamic banks in other countries. For instance, Kamaruddin et al (2008) found that the average of technical efficiency of the Malaysian Islamic banks is equal to 93% for the period 1998-2004. In a recent study of Islamic banks in MENA and Asian countries, Sufian et al (2008) found that Islamic banks in Indonesia during the period 2001-2006 are the most efficient from the Asian region, exhibiting a mean technical efficiency of 92.3%. However, Several studies (e.g, Mohammed et al., 2008; Hassan et al. 2009) suggested that there are no significant differences between the overall efficiency results of conventional versus Islamic banks.

The decomposition of overall technical efficiency into PTE and SE components provides information on the source of technical inefficiency. Table 2 reveals that the pooled means for PTE and SE, during the analysed period, are respectively of 77.3% and 85.5%. The result shows that the inefficiency in Islamic banks could be attributed to pure technical inefficiency (29.3%) rather than to scale inefficiency (17%). It means that Islamic banks in GCC countries are managerially inefficient to control costs but manage their inputs efficiently. This finding of the dominant impact of managerial inefficiency over scale inefficiency is also reported in other studies (e.g. Sufian et al (2008) for Islamic banks in MENA and Asian countries, Kyj and Isik (2008) for Ukrainian banking industry and Zaim (1995) for Turkish banks). According to several studies (e.g, Bashir, 2007, Iqbal, 2007), the inefficiencies in Islamic banks can also be attributed to other many causes such as: limited number of short-term instruments, Shortage of products for medium and long term maturities, portfolio of Islamic banks concentrated on equity and non-interest based financing, especially focused on trade financing, small size of banks, weak management and lack of proper risk-monitoring systems.

Inefficiency (IE) is calculated as follows: $\text{IE} = \frac{(1-E)}{E}$ with E represents efficiency score.
Furthermore, we attempt in this study to identify the nature of scale inefficiency which can be due to increasing returns to scale (IRS) or decreasing returns to scale (DRS)16. Table N°3 displays statistics for the number of banks in different categories of scale economies and also presents the returns to scale of banks classified by size. According to the figures of this table, only 19\% of Islamic banks operate at their optimal scale (CRS) and the majority of banks are scale inefficient (58\% at DRS and 23\% at IRS). It is also interesting to note that the share of the banks experiencing economies of scale (IRS) and diseconomies of scale (DRS) are relatively constant during the sample period. The results confirm those found in table N°2 relative to the stability of scale efficiency of Islamic banks over the period of study. Panel B of table N°3 also indicates that the majority of Islamic small banks (83\%) exhibited IRS (53\%) or CRS (30\%) while the medium and large banks operated at DRS (80\%). It means that an increasing of the activities and size of Islamic small banks may have a significant cost savings and in consequence improve the technical efficiency of these banks, than size expansion by the medium and large banks. A similar finding are suggested in other countries such as: Singapore (Rezvanian and Mehdian, 2002), Turkey (Isik and Hassan, 2002) and India (Rezvanian et al. 2008).

After examining the evolution of the efficiency of Islamic banks over the period of study and the sources of their inefficiency, the issue of interest now is to compare the efficiency scores of banks according to their size. For this reason, we categorize sample banks into three groups based on their total assets with an approximate number of banks in each category. The first group comprises 9 small banks with assets size less than 3 billion dollar. The second group includes medium banks (8 banks) whose assets are between 3 and 5 billion dollar. While, the last group concerns large banks (8 banks) whose assets exceed 5 billion dollar.

In terms of overall technical efficiency, panel B of table N°2 shows that large (68.6\%) and small (66.9 \%) banks are the most efficient while the medium banks presented the lowest mean TE of 65.3\%. This is consistent with several studies which reported a significant positive association between size and efficiency (e.g. Drake and Hall, 2003, Chen et al. 2005, Pasiouras, 2008, Srairi, 2010). Large banks present some advantages than small and medium banks. According to Kyj and Isik (2008, p 381) “large banks may be able to hire a better management team, utilize better technology, be located in larger, more competitive markets, and have more diversified loan portfolio. Large banks, thus, may have lower default risk, and lower borrowing costs”. However, other studies found a negative (e.g. Christopoulis et al. 2002; Bonin et al. 2005) or no significant (e.g., Berger and Hannam, 1998; Girardone et al. 2004) relationship between size and efficiency. On the other hand, the result indicates that large (77.9\%) and medium (76.2\%) banks are more pure technical efficiency than small banks (67.6\%). However the latest display superior measure on scale efficiency which is 10.5\% and 15\% higher than medium and large banks respectively. Consequently, it seems that Islamic small banks need more improvement in terms of managerial practices while Islamic medium banks need to increase their scale efficiency.

16 In this case efficiency scores are computed relative to a frontier that exhibits non increasing returns to scale (NIRS). If NIRSi=PTEi, the bank i operates at DRS. If NITSi≠PTEi, the bank i is said to be operating at IRS (Fare et al. 1985)
4-2. Efficiency and share performance

To assess the relationship between the efficiency of Islamic banks and their share prices, we regress annual stock price returns on annual percentage change of efficiency scores, derived from DEA analysis, with other explanatory variables. Models N°1, N°2 and N°3 in table N°4 present the regression results estimated by fixed-effect model for technical, pure technical and scale efficiency changes respectively. The results indicate that both technical and pure technical efficiency change have a positive and statistically significant (1% for TE and 5% for PTE) effect on stock returns. Indeed, the share prices of Islamic banks respond positively towards improvement in managerial efficiency. Hence, it seems that information regarding the efficiency of banks is reflected in the stock prices of banks. In fact, in an efficient market, share prices incorporate all publicly available information (Fama, 1970). Thus, efficient banks, according to Beccalli et al (2006) and others can better improve their share price performance than inefficient banks. So, our results are in line with several studies in other countries which found a positive association between technical efficiency change and share performance (e.g., Pasiouras et al, 2008 for Greek banks, Xiang and Shamsudding, 2009 for Australian banks, Sufian and Abdul Majid, 2009 for China banks). However, other researches (e.g., Liadaki and Gaganis, 2010 for European banks; Ioannidis et al, 2008 for Asian and Latin American banks; Chu and Lim, 1998 for Singapore banks) show that changes in stock returns reflect changes only in profit efficiency rather than in cost efficiency. According to Liadaki and Gaganis, (2010), these results can be explained by the fact that rational shareholders and investors are more interested by the profit of banks as an indicator of the future dividends. Moreover, cost efficiency reflects the capability of managers but it is not directly observed in the stock market.

From table N°4 (model N°3), it is also noted that the estimated coefficient of scale efficiency change is positive but it is not statistically significant. It means that scale efficiency does not have any impact on bank’s share returns. This finding is also confirmed by the coefficient of bank size which is insignificant in all of the regression models. A similar result is also found by Pasiouras et al (2008) and Sufian and Abdul Majid (2009).

Regarding to the control variables and their influence on stock returns, table N°4 indicates that market return, in all models, has the expected sign and a significant power to explain the variation in stock prices. This result, which is consistent with previous studies (e.g., Xiang and Shamsuddin, 2009; Erdem and S.Erdem, 2008), shows that stock price returns of Islamic banks are positively related to the overall performance of the market. On the other hand, the association between the ratio of book-to-market value (BM) and share performance is positive and significant at the 5% level for all models. However, our results are different from the study of Xiang and Shamsuddin (2009) concerning Australian banks which found a negative sign of BM, implying a possibility of market expectation of systematic risk.

5. Discussion

Many policy implications and recommendations can be derived from the results of this paper. First, since Islamic banks in GCC countries exhibited a lower level of efficiency compared to conventional banks, it is necessary for these institutions to promote and enhance their functioning in several areas (Bashir, 2007; Iqbal, 2007). Islamic banks are still operating with a limited number of instruments for short-term and there is a shortage of products for medium
to long term maturities. In this regard, Islamic banks have to offer new products and modes of finance that enhance risk management and portfolio diversification. Due to limited size and resources, Islamic banks are unable to reap the benefits of economies of scale and are also unable to afford high cost management information systems to assess and monitor risks. Accordingly, Islamic banks have to perform strategic alliances with other Islamic financial institutions and collaborate with conventional banks which are more sophisticated in financial engineering. Further, to a better control and to reduce their costs, Islamic banks need to invest more in technology, to develop innovating methods in terms of risk management and to increase the efficiency of their staff by investing in training and development. Second, the results show that there is an improvement in efficiency of Islamic banks over the period of liberalization in Gulf countries. Therefore, authorities in this region should continue to reinforce financial reforms, increase economic integration between countries and undertake constructive policy actions to develop innovating methods in terms of risk management and to increase the efficiency of their staff by investing in training and development. Second, the results show that there is an improvement in efficiency of Islamic banks over the period of liberalization in Gulf countries. Therefore, authorities in this region should continue to reinforce financial reforms, increase economic integration between countries and undertake constructive policy actions to develop Islamic capital markets which help to integrate Islamic financial institutions into regional and international financial system. Finally, while there is a positive association between the performance of Islamic banks and their stock price returns, it appears that efficiency measures contain important and helpful information which could be used by managers of banks, shareholders and investors.

6. Conclusion

Islamic banking is viewed as a competitive and an alternative to conventional banking system in many states of the world, particularly in GCC and some Asian countries. In addition, during the last decade, Islamic banking assets have been growing at a faster pace (an average annual growth of 20%) than the overall banking system, with expectations that it will play a growing role in the next years. Moreover, the Islamic financial system has proved to be the least affected by the last economic and financial crisis. In light of the above considerations, it is important to assess and analyse how Islamic banks have performed during the last years.

In the present study, we estimate the efficiency of 25 GCC Islamic banks over the period 2003-2009. By using a non-parametric DEA technique, under the profit oriented approach, we calculate technical, pure technical and scale efficiencies to study the evolution of these efficiency measures across time and to analyse the size efficiency relationship. Additionally, this paper attempts to investigate the influence of the performance of Islamic banks in terms of efficiency on their stock prices. Several important findings emerge.

The results indicate that the average technical efficiency was equal to 66% and that the trend of both TE and PTE were on the rise, suggesting that Islamic banks in GCC countries have improved their efficiency during the survey period. This was the period where the processes of liberalization of the GCC financial system has been realised at an accelerated pace. Overall, we also find that the inefficiency in Islamic banks is attributed mainly to pure technical inefficiency (29%) instead of scale inefficiency (17%). Thus, it seems that Islamic banks are managerially inefficient to control their costs and their inputs. It is interesting to note that the majority of Islamic banks are scale inefficient and have a small or medium size. This implies that these banks can achieve cost savings and improve their efficiency by increasing their size and scale of operations. Furthermore, our findings regarding the impact of size on the efficiency of Islamic banks suggest that while large banks are more managerially and technically efficient than small banks, they are also less scale efficient than the smaller banks. In terms of pure technical efficiency, large size Islamic banks seem also to be the most efficient ones followed by the medium banks. In this regards, it appears that small
banks need to improve their managerial practices, while medium banks have to increase their scale efficiency.

Using the efficiency scores of Islamic banks, we analyse the link between efficiency change and stock returns. The results derived from fixed effect model show that percentage changes in the prices of bank stocks reflect percentage changes in both technical and pure technical efficiency. However, we find any significant relationship between scale efficiency and stock returns. Thus, our results seem to support the argument that stock returns respond positively towards improvement in managerial efficiency but do not react towards changes in scale efficiency (Sufian and Abdul Majid, 2009). Hence, the efficiency of a bank’s operation has significant information about its share price performance, which is not explained by market movements.

One implication of the findings is that managerially efficient banks should be more profitable and therefore generates greater shareholder returns. This is in line with the efficient market theory that in an efficient market a change in cost efficiency should be incorporated in the price formation process. Finally, the study also revealed that market return and ratio of book-to-market value have a positive impact on stock returns.

References

Appendices

Table N°1: Summary statistics of dataset used in the study (average values)

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: inputs and outputs<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Employee expenses (x1)</td>
<td>23.47</td>
<td>25.21</td>
<td>32.7</td>
<td>48.35</td>
<td>67.63</td>
<td>73.89</td>
<td>70.27</td>
</tr>
<tr>
<td>- Other operating expenses (x2)</td>
<td>19.66</td>
<td>21.26</td>
<td>36.47</td>
<td>43.77</td>
<td>52.78</td>
<td>58.83</td>
<td>61.22</td>
</tr>
<tr>
<td>- Loan loss provision (x3)</td>
<td>19.95</td>
<td>19.05</td>
<td>17.71</td>
<td>13.16</td>
<td>18.92</td>
<td>61.73</td>
<td>120.47</td>
</tr>
<tr>
<td>- Net interest income (y1)</td>
<td>103.92</td>
<td>116.50</td>
<td>168.35</td>
<td>200.29</td>
<td>272.66</td>
<td>275.72</td>
<td>262.78</td>
</tr>
<tr>
<td>- Other operating income (y2)</td>
<td>27.86</td>
<td>38.62</td>
<td>77.86</td>
<td>113.12</td>
<td>157.13</td>
<td>132.67</td>
<td>95.82</td>
</tr>
<tr>
<td>Panel B: control variables and stock return<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Total assets (US$ Millions)</td>
<td>2707</td>
<td>3065</td>
<td>3835</td>
<td>5200</td>
<td>7124</td>
<td>9062</td>
<td>9739</td>
</tr>
<tr>
<td>- Book-to market equity</td>
<td>-</td>
<td>2.15</td>
<td>0.90</td>
<td>1.35</td>
<td>1.45</td>
<td>2.23</td>
<td>1.53</td>
</tr>
<tr>
<td>- Annual stock return</td>
<td>-</td>
<td>44.82</td>
<td>67.84</td>
<td>-27.33</td>
<td>16.56</td>
<td>-81.25</td>
<td>-15.33</td>
</tr>
</tbody>
</table>

Notes: a: variables in US$ million, b: all variables are in percentage, except where indicated.
Table N°2: Efficiency scores by year and size (average values)

<table>
<thead>
<tr>
<th></th>
<th>TE</th>
<th>PTE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>Panel A: by year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>0.612</td>
<td>0.147</td>
<td>0.718</td>
</tr>
<tr>
<td>2004</td>
<td>0.643</td>
<td>0.195</td>
<td>0.738</td>
</tr>
<tr>
<td>2005</td>
<td>0.650</td>
<td>0.141</td>
<td>0.751</td>
</tr>
<tr>
<td>2006</td>
<td>0.642</td>
<td>0.112</td>
<td>0.778</td>
</tr>
<tr>
<td>2007</td>
<td>0.671</td>
<td>0.115</td>
<td>0.799</td>
</tr>
<tr>
<td>2008</td>
<td>0.681</td>
<td>0.162</td>
<td>0.813</td>
</tr>
<tr>
<td>2009</td>
<td>0.685</td>
<td>0.085</td>
<td>0.817</td>
</tr>
<tr>
<td>Panel B: by size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small banks</td>
<td>0.669</td>
<td>0.156</td>
<td>0.676</td>
</tr>
<tr>
<td>medium banks</td>
<td>0.653</td>
<td>0.118</td>
<td>0.762</td>
</tr>
<tr>
<td>Large banks</td>
<td>0.686</td>
<td>0.159</td>
<td>0.779</td>
</tr>
<tr>
<td>Overall</td>
<td>0.655</td>
<td>0.140</td>
<td>0.773</td>
</tr>
</tbody>
</table>

Table N°3: Return to scale in Islamic banks by year and size

<table>
<thead>
<tr>
<th>Years</th>
<th>DRS</th>
<th>IRS</th>
<th>CRS</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nb. of banks</td>
<td>% share</td>
<td>Nb. of banks</td>
<td>% share</td>
</tr>
<tr>
<td>Panel A: by year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>15</td>
<td>62</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>2004</td>
<td>15</td>
<td>62</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>2005</td>
<td>14</td>
<td>58</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>2006</td>
<td>13</td>
<td>52</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>2007</td>
<td>12</td>
<td>48</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>2008</td>
<td>15</td>
<td>60</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>2009</td>
<td>15</td>
<td>60</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>99</td>
<td>58</td>
<td>40</td>
<td>23</td>
</tr>
<tr>
<td>Panel B: by size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small banks</td>
<td>10</td>
<td>17</td>
<td>32</td>
<td>53</td>
</tr>
<tr>
<td>medium banks</td>
<td>44</td>
<td>79</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Large banks</td>
<td>45</td>
<td>80</td>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>

DRS: decreasing returns to scale, IRS: increasing returns to scale, CRS: constant returns to scale.
Table N°4: Regression Results of equation N°1

\[RS_{it} = \alpha + \beta_1 CE_{it} + \beta_2 MR_{jt} + \beta_3 BSF_{it} + \epsilon_{it} \]

RS\(_{it}\) is the annual return on bank i’s stock in year t. CE\(_{it}\) represents the annual percentage change in bank efficiency and includes the technical (TE, model N°1) or pure technical (PTE, model N°2) or scale efficiency (SE, model N°3) for bank i in year t. MR\(_{jt}\) is the market return for banking sector j in year t and BSF\(_{it}\) concerns some specific factors and includes two variables: LTA\(_{it}\) is the size of bank i in year t measured as the natural logarithm of total assets and BM\(_{it}\) is the book-to-market equity ratio calculated as the ratio of the book value of a bank’s equity to its market value.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model N°1</th>
<th>Model N°2</th>
<th>Model N°3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant : (\alpha)</td>
<td>2.15</td>
<td>2.03</td>
<td>2.11</td>
</tr>
<tr>
<td>Annual change in efficiency scores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Efficiency : TE</td>
<td>3.14</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(2.30)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure Technical Efficiency: PTE</td>
<td>-</td>
<td>7.07</td>
<td>-</td>
</tr>
<tr>
<td>(2.61)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale Efficiency: SE</td>
<td>-</td>
<td>-</td>
<td>0.83</td>
</tr>
<tr>
<td>Control Variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market return: MR</td>
<td>0.84</td>
<td>0.86</td>
<td>0.87</td>
</tr>
<tr>
<td>(9.05)*</td>
<td></td>
<td></td>
<td>(8.96)*</td>
</tr>
<tr>
<td>Size of bank: LTA</td>
<td>0.71</td>
<td>0.56</td>
<td>0.51</td>
</tr>
<tr>
<td>(1.61)</td>
<td></td>
<td></td>
<td>(1.60)</td>
</tr>
<tr>
<td>Book to market equity ratio: BM</td>
<td>7.31</td>
<td>7.35</td>
<td>7.12</td>
</tr>
<tr>
<td>(2.55)**</td>
<td></td>
<td></td>
<td>(2.41)**</td>
</tr>
<tr>
<td>Adjusted R2</td>
<td>0.617</td>
<td>0.597</td>
<td>0.499</td>
</tr>
<tr>
<td>F value</td>
<td>38.66*</td>
<td>35.29*</td>
<td>35.60*</td>
</tr>
<tr>
<td>Nb. Observations</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>F value</td>
<td>48.3</td>
<td>46.4</td>
<td>43.2</td>
</tr>
<tr>
<td>LM</td>
<td>385.2</td>
<td>391.3</td>
<td>380.4</td>
</tr>
<tr>
<td>Hausman test</td>
<td>36.1</td>
<td>33.8</td>
<td>31.2</td>
</tr>
</tbody>
</table>

Notes: t- statistics are between parentheses. *, ** and *** indicate statistical significance at 1%, 5% and 10%, respectively.